
Grid Service Selection with PPDL�

Massimo Marchi1, Alessandra Mileo1, and Alessandro Provetti2

1 DSI-DICO, Univ. degli Studi di Milano. Milan, I-20135 Italy
marchi@dsi.unimi.it, mileo@dico.unimi.it

2 Dip. di Fisica, Univ. degli Studi di Messina. Messina, I-98166 Italy
ale@unime.it

Abstract. The application of the novel PPDL (Policy Description Lan-
guage with Preferences) specification language to Grid-Service Selection
is presented. We describe an architecture based on interposing the policy
enforcement engine between the calling application and the client stubs.
This way, our solution is fully declararive and remains transparent to the
client application.

This poster article reports on our experimental application of PPDL to the
standard Grid Service architecture. PPDL, which is formally described below,
is a declarative language that extends the Policy Description Language PDL
[2] by permitting the specification of preferences on how to enforce integrity
constraints. The declarative semantics of PPDL policies is given by translation
into Brewka’s Logic Programs with Ordered Disjunctions (LPOD) [3]. Translated
LPOD programs will then be fed to the Psmodels solver [4], which has shown a
reasonable efficency.

Grid Services Architecture. Web Services is a distributed technology using
a set of well-defined protocol derived from XML and URI that achieves a large
interoperability between different client/server implementations. In our experi-
ments, we use GT3 Grid Services, an extension of Web Services (WS) coded in
Java. Typically, each communication between client and server is made through
a coupled object, called stub. When a client application needs a service, it queries
the UDDI Registry to retrieve a list of Web Services that fit its request. The query
response passed to the client application can be i) the first in the list of results,
ii) randomly chosen or iii) user-chosen through some static meta-information
stored in the UDDI.

In contrast, our approach allows user-defined policies that are evaluated dy-
namically and client-side. The policy module shown in Figure 1 catches all start-
ing invocations from client, stores all available servers returned by the UDDI,
applies the connection policy by translating it into a LPOD program, invokes
Psmodels and, according to the result, routes the call.
� Thanks to E. Bertino, S. Costantini, J. Lobo and M. Ornaghi. Work supported by the

Information Society Technologies programme of the European Commission, Future
and Emerging Technologies under the IST-2001-37004 WASP project.

B. Demoen and V. Lifschitz (Eds.): ICLP 2004, LNCS 3132, pp. 464–466, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Grid Service Selection with PPDL 465

Client
Stubs

Stubs
Server

URL1

URL2 Server 2

Server 1

URL1’

Client

Application PPDL
module

PPDL Policy

Fig. 1. PPDL module on WS client.

Policies Specification and Enforcement. Some of these authors have de-
veloped PPDL [5] as an extension of PDL [2]. Even though PPDL has rather
simple constructs and is prima-facie less expressive than the traditional Knowl-
edge Representation languages, it allows capturing the essence of routing control
while keeping the so-called business logic outside the client applications; (P)PDL
policies can be changed at any time transparently from the applications, which
do not need rewriting.

A PPDL policy is defined as a set of ECA-style rules Pi and a set of consis-
tency-maintenance rules Mi:

Pi : e1, . . . em causes a if C
Mi : never a1 × . . . × an if C′

where C, C′ are Boolean conditions, e1, . . . em are events (requests), a is an
action to be executed and a1 . . . an are actions that, intuitively, cannot execute
simultaneously. Notice that PPDL rules are evaluated and applied in parallel and
in a discrete-time framework. If applying the policy yields a set of actions that
violates one of the Mi (for monitor) rules, then the PPDL interpreter will cancel
some of the actions. The decision on which action to drop has been addressed
in our work [5, 6] and it corresponds to applying the ordered disjunction oper-
ator (×) of LPODs [3] into the Mi rules. Both the declarative and operational
semantics of PPDL policies are given by translation into LPODs.

To sum it up, Fig. 2 shows how PPDL policies are employed in our architec-
ture.

An Example Specification. Suppose we want to i) send calls to the add(x,y)
function to a server providing it (to be found on a look-up table) but ii) prefer
sending calls to host zulu over host mag whenever x is greater than 100. As-
suming that we have a look-up table mapping each WS interface into a PPDL
constant, e.g. iMath, the PPDL rules are as follows:

request(iMath.M(L)) causes send(URL, iMath.M(L)) if table (URL, iMath).
never send(mag, iMath.M(L)) × send(zulu, iMath.M(L)) if M=add, L[0]> 100.



466 Massimo Marchi, Alessandra Mileo, and Alessandro Provetti

Stubs
Client

Environment

Rules

T
ra

ns
la

te

Select
Action

AnswerLogic
Program Set

Action

[LPOD]

T
ra

ns
la

te

Resolve
call()

Client
Application

[PPDL]

call()

Fig. 2. Our software architecture

References

1. Marchi M., Mileo A. and Provetti A., 2004. Specification and execution of policies
for Grid Service Selection. Poster at ICWS2004 conference. IEEE press.

2. Chomicki J., Lobo J. and Naqvi S., 2003. Conflict Resolution using Logic Program-
ming. IEEE Transactions on Knowledge and Data Engineering 15:2.

3. Brewka, G., 2002. Logic Programming with Ordered Disjunction. Proc. of AAAI-02.
4. PSMODELS: http://www.tcs.hut.fi/Software/smodels/priority/
5. Bertino E., Mileo A. and Provetti A., 2003. Policy Monitoring with User-Preferences

in PDL. Proc. of NRAC 2003 Workshop. Available from http://mag.dsi.unimi.it/
6. Bertino, E., Mileo, A. and Provetti, A., 2003. User Preferences VS Minimality in

PPDL. Proc. of AGP03, Available from http://mag.dsi.unimi.it/


	References

