
Through	Python	
"Nel	mezzo	del	cammin	di	nostra	vita	mi	ritrovai	per	una	selva	oscura..."	

Dante	Alighieri		



Syllabus	
•  Variables	vs	object	
•  Float	representa2on	
•  The	importance	of	syntax	
•  operator	overloading		
•  built-in	func2on	vs	module	vs	namespace	
•  structuring	code:	indenta2on	



Variable	vs	Object	
•  A	"classical"	variable	can	bring	only	values,	may	be	
mul2ple	values	packed	in	a	given	structured	
organiza2on	:		
•  a=1	 	 	 	;	integers	
•  b="text" 	 	 	;	strings	
•  c=[1,2,3,4,5] 	 	;	arrays	
•  d={	"mad"=>1	,	"max"=>2		} 	;	hashes	

•  An	object	can	bring	also	ac#ons:	
•  a.increment_by_one()		 	;	increment	a	by	1	
•  b.start_with("t") 	 	;	return	TRUEif	b	start	with	"t"	
•  c.length() 	 	 	;	return	the	length	of	c	
•  d.keys() 	 	 	;	return	the	list	of	defined	keys	



Variable	vs	Object	(contd)	
•  Object	permits	to	isolate	the	code	for	manipula2ng	data	inside	a	
container	with	the	data.	
•  the	final	code	will	appear	more	clean	with	a	natural	separa2on	between	
different	func2onal	areas.	

•  debug	will	be	more	easy	because	objects	isolate	its	own	opera2ons	
inside	to	itself	with	a	clear	iden2fica2on	of	the	rela2onship	with	the	
other	part	of	the	code.	

•  It	possible	to	improve	code	inside	object	without	care	of	the	rest	of	the	
code	(if	the	existed	rela2onship	are	holds)	

•  Objects	are	created	when	they	are	used	(during	the	execu2on)	and	
destroyed	automa2cally	by	the	garbage	collector	when	the	objects	
are	no	longer	referenced	without	interven2on	by	the	code;	the	
garbage	collector	opera2ons	takes	some	2me		and	it	performed	at	
random	2me;	these	aspects	can	became	problems	in	some	
par2cular	applica2ons	



Float	representation	
•  The	format	used	by	computer	to	represent	float	is	derived	
from	the	format	IEEE754	

•  It	is	composed	by	3	parts:	
•  sign:	0=plus,		1=minus	
•  man2ssa:	a	number	in	the	range	of	[1..2)	that	can	be	interpreted	
as	the	key	informa2on	

•  exponent:	that	can	be	interpreted	as	the	scale	of	applica2on	
•  102=+1.02*10^2			à				s=0,	m=1.02,	e=2	



Float	representation(contd)	
•  Float	format	is	NOT	exact	
•  any	real	number	is	represented	by	the	most	inner	number	
representable	by	the	float	format.	

•  Due	to	the	fact	that	the	minimum	representable	number	>	0	is	
fixed	(≅10^-20),	two	numbers	that	differs	less	than	this	quan2ty	
can	not	be	dis2nguished	because	the	difference	gives	0	as	the	
results.	

•  Adding	float	with	too	many	different	exponents	can	waste	
informa2on	
•  Due	to	the	fact	that	the	precision	of	the	representa2on	is	not	
constant	in	the	whole	range	but	decrease	when	exponents	
increase,	if	you	sum	to	a	very	big	number	a	very	lidel	lidle	
number,	with	value	less	than	the	current	precision	defined	by	the	
exponent	of	the	big	number,	the	result	of	the	sum	is	the	same	of	
the	big	number;		



The	importance	of	Syntax	
•  PAY	BIG	ATTENTION	TO	ANY	CHAR	WHEN	YOU	WRITE	CODE	
•  "0"	(zero)	is	NOT	"o"	(lower	case	leder	o)	or	"O"	(upper	case	leder	O)	
•  UPPERCASE	is	DIFFERENT	respect	to	lower	case	
•  "("	is	DIFFERENT	respect	to	"[		or	"{"	
•  when	you	open	some	"("	or	"["	or	"{"	usually	you	have	to	close	it,	in	the	
same	order.	

•  Spaces	cannot	be	used	ad	libitum:	in	some	places,	a	space	change	
meaning	to	a	statement.	

•  the	order	is	(almost	always)	important:	pay	aden2on	to	the	func2on	
arguments	

•  the	type	of	arguments	of	a	func2on	is	IMPORTANT;	if	you	try	to	append		
a	number	to	a	"text",	you	rise	an	error.		

•  Python	2	is	NOT	compa2ble	with	Python	3	
•  Use	Python	3!	More	clean,	a	lidle	bit	slow	in	some	situa2ons)	



Operator	overloading	
•  In	many	languages	you	can	use	the	same	operator	to	perform	
different	ac2ons;	this	is	called	Operator	overloading	

•  Selec2on	between	different	behaviours	are	made	by	check	
the	type	of	the	arguments	to	which	the	overloaded	operator	
is	applied:	
•  In	Python	the	"+"	operator,	sum,	is	overloaded	for	integers,	float	
and	string:	
•  if	it	is	applied	to	integers	performs	the	sum	of	integers,		
•  if	it	is	applied	to	a	float	it	performs	the	sum	of	float;	if	the	other	
argument	is	an	integer,	then	it	is	converted	into	float	before	the	sum	

•  if	it	is	applied	between	strings,	it	performs	the	concatena2on.	
		



Built-in	function	vs	module	vs	
namespace	
•  In	Python,	there	are	a	set	of	built-in	func2ons,	i.e.	func2ons	
implemented	into	the	core	of	the	interpreter;	these	func2ons	
are	defined	in	the	default	namespace:	they	can	be	called	as	is	
without	any	addressing	prefix.	

•  Other	func2on	can	be	imported	from	external	modules;	the	
imported	func2ons	lie	into	a	separate	namespace:	if	you	want	
to	you	a	func2on,	says	ceil	into	module	math,	aoer	import	the	
module,	you	have	to	address	it	by	an	addressing	prefix,	
math.ceil().	If	you	want	to	use	a	func2on	without	the	
addressing	prefix,	you	have	to	import	into	the	default	
namespace	



Built-in	function	vs	module	vs	
namespace(contd)	
import	math 	 	//import	the	module	math	
print(dir(math)) 	 	//print	all	exported	func2ons	(and		other)	
	
a=1.2	
print(math.ceil(a)) 	//print	"2"	using	the	namespace	math	
	
from	math	import	ceil 	//import	ceil	into	default	namespace	
print(ceil(a))	



Structuring	code	
Keep	code	clean!	

•  use	meaningful	names	for	variables	and	func2on	
•  divide	et	impera:	divide	big	works	into	small	steps	
•  do	not	reinvent	the	wheel:	if	exist	a	library	to	make	a	job,	try	
to	use	it.	

•  do	not	use	too	newer	wheels:	try	to	use	consolidated	and	
maintained	libraries	

•  describe	your	code:	put	(meaningful)	comments	at	the	
beginning	of	the	fuc2ons	and	the	main	code	blocks,	write	the	
funcDon	protoDpe	at	the	beginning	of	the	func2on.	


