
S

Computability,
complexity, feasibility

Computability

S  The computability problem: is an algorithm computable? It
has a solution?

S  The halting problem: Does an algorithm finish?
S  Video: The Halting Problem

In order to answer these questions we need a

MACHINE MODEL

The Finite State Machine

S  Its a model to describe a computational automa

S  It has a finite number of possible internal state

S  The transition from a state to another depends to the actual
state and the value of the input

The Turing Machine

S  It is a powerful model for describe computational machines

S  It cosist of a finite state machine that can read and write to a
potentially infinite memory ribbon.

S  Any computational model can be reduced to the Turing
machine.

Results on computability

S  There exists some program that cannot be computed i.e. for
which it cannot determine the value.

S  There exists some program for which it cannot determine if
it finish or not.

Complexity

S  For computable programs the is another problem: how time
and resources is it required for reach solution?

S  For "large" problems, its not so important the exact time
spent for resolve the problem but the "trend" respect the
"size" of inputs.

O notation

S  Given a problem P and an algorithm A that resolve P an
input of "size" n for the problem P, the notation O(n) means
that for "big" n the time for reach solution is O(n), for ex:
S  O(n)=k , constant time

S  O(n)=n , linear time

S  O(n)=n^2 , polinomial time à P problem

S  O(n)=e^n , exponential time à NP Problem

S 

P <> NP Assumption

S  polinomial time algorithm has considered "easy" to
computes, tough "big" n can be very hard to compute.

S  not polinomial time algorithm, for exemple
exponential time algorithm, has considered "hard" to
computes, tough can be not so hard to compute for
"little" exponents and "little" n.

S  It is widely assumed (tough not proved) that exists NP
problem that isnt P, i.e. that cannot be resolved "easily".

How to resolve a problem

S  A programming paradigma it is a "way" to describe a
solution method for a problem:
S  imperative languages: C, java, basic

S  declarative languages: ASP

S  functional: prolog

Client-Server Architecture

Clients

Server

Internet

Client constraints

S  bandwidth (mainly smartphone)

S  battery (mainly smartphone)

S  software capability (OS, supported apps)

S  CPU

S  RAM

S  Disk space

Your app/site must be designed in order to match the expected (and
acceptable) constrains on client side

Server constraints

S  bandwidth (mainly smartphone)

S  Number of contemporaneous sessions

S  Disk space

S  Cost

S  CPU & RAM (less important for a common website)

The server "size" must be designed in order to balance the
tradeoff between user experience and cost

